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Abstract. The weighted sums approach for linear and convex multiple criteria optimization is

well studied. The weights determine a linear function of the criteria approximating a decision
makers overall utility. Any efficient solution may be found in this way. This is not the case for
multiple criteria integer programming. However, in this case one may apply the more general

e-constraint approach, resulting in particular single-criteria integer programming problems to
generate efficient solutions. We show how this approach implies a more general, composite
utility function of the criteria yielding a unified treatment of multiple criteria optimization

with and without integrality constraints. Moreover, any efficient solution can be found using
appropriate composite functions. The functions may be generated by the classical solution
methods such as cutting plane and branch and bound algorithms.
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1. Introduction

Multiple objective linear- and integer programming problems play a central
role in the field of multicriteria optimization. Besides their relevance for
practical applications, they are theoretically interesting due to their intrin-
sic relationship to the classical theory of (single objective) linear and inte-
ger programming. Integer programming problems with multiple objectives
are particularly challenging since, due to their nonconvexity, weighted sums
scalarizations of the objective functions cannot be used to generate all non-
dominated solutions. Besides supported, there exist nonsupported nondom-
inated solutions that are dominated by fractional convex combinations of
other solutions. Since nonsupported nondominated solutions often make
up the majority of nondominated solutions of discrete problems, they can-
not be ignored in the decision process (See Visée et al., 1998, for example
data on bicriteria knapsack problems).
A multitude of different techniques for the generation of all the nondom-

inated solutions of multiple objective integer programming problems

Journal of Global Optimization 29: 1–18, 2004.
� 2004 Kluwer Academic Publishers. Printed in the Netherlands.

1



(MOIPs) have been suggested in the recent literature. For an overview we
refer to Clumaco et al. (1997). Particularly relevant in the context of this
paper are the e-constraint method introduced in Haimes et al. (1971) (see
also Cohon, 1978; Chankong and Haimes, 1983 a,b, for further discus-
sions), duality results for single objective linear and integer programming
problems (see, for example, Schrijver, 1986; Wolsey, 1998) and cutting
plane and branch and bound algorithms (see, for example, Nemhauser and
Wolsey, 1988). An application of the e-constraint method in the context of
(MOIP) was mentioned in Bard, (1986), and cutting plane approaches and
branch and bound algorithms were applied to (MOIP) by Alves and Clı́-
maco (1999) and Alves and Clı́maco (2000). The latter describe the combi-
nation of an interactive method based on a parameterization of the
reference point with the repeated solution of non-weighted Tchebycheff
programs, using a cutting planes approach and a branch and bound meth-
odology, respectively. From the perspective of single objective linear and
integer programming, duality theory has a long tradition and a large vari-
ety of applications. Among others, Wolsey (1981), Llewellyn and Ryan
(1993) and Klabjan (2002) discussed generation methods for optimal dual
functions for single objective integer programming problems. An introduc-
tion to duality theory in the context of convex multiple objective program-
ming is, for example, given in Jahn (1983).
The goal of this paper is to use dual information from single objective

linear and integer programming for the development of an integrated util-
ity theory that applies not only to multiple objective linear programming
(MOLP) but also to multiple objective integer programming (MOIP). A
natural generalization of the weighted sums approach for (MOLP) to a
composite utility function approach for (MOIP) is developed that allows a
unified treatment of multiple objective linear and integer programming
problems. This combination of ideas from integer programming duality
with methods from multicriteria programming and utility theory is new
and it implies, among others, meaningful bounds on the complete efficient
set of (MOIPs) in the objective space.
After a formal introduction of the problem in Section 2, interrelations

between linear programming duality and the weighted sums approach for
(MOLP) are reviewed in Section 3. In Section 4, integer programming
duality is used to derive a multiobjective integer programming analogue to
the weighted sums approach. In particular, we analyze how the weighting
vectors – containing the utility information in the case of (MOLP) – can
be deduced from optimal dual variables of appropriately formulated e-
constraint problems. Similarly, composite functions representing the utility
information in the integer case can be deduced from optimal dual func-
tions of correspondingly defined e-constraint problems for (MOIP).
Besides the fact that utility information becomes explicitly available with
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these composite functions, it is also shown that level sets of composite
functions can be used to obtain global bounds on the efficient set of
(MOIP). The application of cutting plane methods and branch and bound
algorithms for the practical determination of composite functions for
(MOIP) is discussed in Section 5. The paper is concluded in Section 6 with
an outlook on potential incorporations and applications of composite
functions within the framework of interactive decision support algorithms
for (MOIP).

2. Problem formulation

The following notation is used throughout the paper. Let u;w 2 Rk be two
vectors. We denote components of vectors by subscripts and enumerate
vectors by superscripts, u > w denotes ui > wi, for all i ¼ 1; . . . ; k:uPw
denotes uiPwi for all i ¼ 1; . . . ; k, but u 6¼ w. u3w allows equality. The
symbols <, O, 2 are used accordingly. Let Rk

2 : ¼ fx 2 Rk:x2 0g. The
set Rk

3 is defined accordingly and the set uþ Rk
3 , where u 2 Rk, is

referred to as a dominating cone. For an m� n- matrix A, let ðai�Þ ¼ : ai

be the ith row of A, and let ða�jÞ be the jth column of A. Moreover, for an
index set J � f1; . . . ;mg, AJ denotes the submatrix ða jÞj2J of A, i.e., the
submatrix consisting of the rows in J.
We consider the following general multiple objective program (MOP)

maxfz1 ¼ f1ðxÞg

..

.

maxfzk ¼ fkðxÞg
s:t: x 2 S;

ð1Þ

where S � Rn is the feasible set and fiðxÞ; i ¼ 1; . . . ; k; are real-valued func-
tions. Problem (1) is called a multiple objective linear program (MOLP) if

fiðxÞ ¼ cix 8i ¼ 1; . . . ; k and

S ¼ fx 2 Rn :Ax2 b; x3 0g ð2Þ

where we assume that all components of the k� n - matrix C :¼ðciÞki¼1, the
m� n - matrix A and the m - vector b are integer. Thus, the MOLP can be
written as

vmax Cx

s:t: Ax2 b

x3 0

ð3Þ
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Similarly, problem (1) is called a multiple objective integer program (MOIP) if

fiðxÞ ¼ cix 8i ¼ 1; . . . ; k and

S ¼ fx 2 Rn: Ax2 b; x3 0 and integerg:
ð4Þ

Problem (1) then reads

vmax Cx

s:t: Ax2 b

x3 0 and integer. ð5Þ
We define the set of all feasible criterion vectors Z, the set of all (globally)

nondominated criterion vectors N and the set of all efficient points E of (1)
as follows

Z ¼ fz 2 Rk: z ¼ fðxÞ; x 2 Sg ¼ fðSÞ
N ¼ fz 2 Z: 9=~z 2 Z s:t: ~zPzg
E ¼ fx 2 S: fðxÞ 2 Ng;

where fðxÞ ¼ ðf1ðxÞ; . . . ; fkðxÞÞT. We assume that the set Z is bounded and
Rk

2 - closed, i.e., the set Zþ Rk
2 is closed, and that the sets N and E are

nonempty. A point �x 2 S is called weakly efficient if there does not exist
another point x̂ 2 S such that fð x̂Þ > fð�xÞ:

3. Methodology

3.1. SOLUTION APPROACHES FOR MOPS AND MOLPS

The following results can, for example, be found in Steuer (1986).

3:1:1: Weighted-Sums Approach

Let K : ¼ fk 2 Rk:k > 0;
Pk

i¼1 ki ¼ 1g be the set of all strictly positive
weighting vectors. Then for a fixed k 2 K the composite or weighted-sums
program corresponding to (1) is given by

max �kTfðxÞ
s:t: x 2 S:

ð6Þ

THEOREM 1. If x� is an optimal solution of (6), then x� is efficient for
(1).

THEOREM 2. If x� is an efficient solution for the MOLP (3), then there
exists �k 2 K such that x� is optimal for (6).

Note that Theorem 2 does not generalize to nonlinear or discrete MOPs.
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COROLLARY 1. If �k 2 K :¼fk 2 Rk : kP0;
Pk

i¼1 ki ¼ 1g, then an optimal
solution x� of (6) is weakly efficient for (1).

3.1.2. e-Constraint Approach

Let i 2 f1; . . . ; kg and ej 2 R; j 2 Ji :¼f1; . . . ; kgnfig. Then the ith objective
e-constraint program can be formulated as

max fiðxÞ
s:t: fjðxÞPej 8j 2 Ji

x 2 S: ð7Þ

We will assume in the following that the lower bounds ej; j 2 Ji are always
chosen such that (7) is feasible. This implies the existence of an optimal
solution as Z is assumed to be bounded.

THEOREM 3. Every optimal solution of (7) is a weakly efficient solution of
(1), and the set of all optimal solutions of (7) contains at least one efficient
solution of (1).

THEOREM 4. If x� 2 S is an efficient solution of (1), then there exists an
index i 2 f1; . . . ; kg and lower bounds ej 2 R; j 2 Ji such that x� is an opti-
mal solution of (7).

Observe that Theorem 4 holds for general MOPs. It follows that:

COROLLARY 2. If there exists an index i and lower bounds ej 2 R; j 2 Ji
such that x� is the unique optimal solution of (7), then x� is efficient for (1).

3.2. LINEAR PROGRAMMING DUALITY AND ITS IMPLICATIONS FOR MOLPS

For MOLPs we can find a close relationship between the weighted sums
approach and the e-constraint approach that is based on linear program-
ming duality.
Consider the e-constraint LP

max cix

s:t: cjxPej 8j 2 Ji

Ax2 b

x3 0:

ð8Þ

Then we can introduce dual variables uj; j 2 Ji and y 2 Rm to formulate the
dual of (8) as
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min �
X
j2Ji

ejuj þ bTy

s:t: �
X
j2Ji

c j
luj þ ðATyÞlPcil 8l ¼ 1; . . . ; n

ujP0 8 2 Ji; y3 0:

ð9Þ

Using only those optimal dual variables u�j ; j 2 Ji of (9), that correspond to
the e-constraints of (8), we can define a weighting vector û 2 Rk as

ûj :¼
u�j ; j 2 Ji

1; j ¼ i:

(
ð10Þ

After normalization we obtain �k : ¼ û
kûk with �k 2 K. It will be shown below

that an optimal solution of (8) is also optimal for (6) which in the case of
MOLPs is given by

max �kTCx

s:t: Ax2 b

x3 0

ð11Þ

or, equivalently,

max ûTCx

s:t: Ax2 b

x3 0:

ð12Þ

THEOREM 5. Let x� 2 S be an optimal solution of (8). Then the dual opti-
mal solution can be used to construct a weighting vector �k 2 K such that x�

is also optimal for (11).

Proof. To compare with the later developments we give a complete proof
here even though the result is well known in the context of partial
Lagrangian relaxation.
Let x� and u�; y� be primal and dual optimal for (8) and (9), respectively.

Hence c jx�Pej 8j 2 Ji and �
P

j2Ji c
j
lu

�
j þ ðATy�ÞlPcij 8l ¼ 1; . . . ; n and, by

linear programming duality, we have that �
P

j2Ji eju
�
j þ bTy� ¼ cix�. Define

û according to (10). It follows that

bTy� ¼
X
j2Ji

eju
�
j þ cix�O

X
j2Ji

ðc jx�Þu�j þ cix� ¼ ûTCx�:

Now consider the dual of (12), i.e.,
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min bTy

s:t: ATy3CT û

y3 0:

Since y� is dual feasible, and using again linear programming duality, we
have

bTy�P ûTCx�:

We can conclude that bTy� ¼ ûTCx�, hence proving the optimality of x�

for (12). (

Conversely, the following result can be proven:

THEOREM 6. Let x� 2 S be an optimal solution of (11) for some �k 2 K.
Then there exists an index i 2 f1; . . . ; kg such that x� is also optimal for (8),
where the lower bounds are defined as ej : ¼ c jx�; j 2 Ji.

Proof. Similar to the proof of Theorem 5 the following proof is included
for completeness.
Let x� be optimal for (11). Hence x� is weakly efficient for (3) by Corollary

1. If x� is efficient, an arbitrary objective i 2 f1; . . . ; kg can be selected for
(8).
Otherwise, we select an index i 2 f1; . . . ; kg such that there exists no

x̂ 2 S with ci x̂ > cix� and CJi ; x̂3CJix
�. In both cases it can be shown

that x� is optimal for (8). (

We will use later the fact that the maximization of the weighting function
�kTCx in (12) is equivalent to the maximization of the linear utility function

gðxÞ :¼ cixþ
X
j2Ji

u�cjx� bTy� ¼: cix� F �ð�CJix; bÞ; ð13Þ

where F � :Rk�1þm ! R is a linear function (and thus nondecreasing and
superadditive, c.f. Section 3.3), and Cji denotes the submatrix of C consist-
ing of the rows in Ji i.e., obtained by deleting its ith row. Note that bTy� is
a constant that has no impact on the maximization of g.

3.3. INTEGER PROGRAMMING DUALITY

The previous section shows that duality is a powerful tool for the generation
of weighting vectors and hence of utility functions for MOPs. Since our ulti-
mate goal is to develop a similar theory also for MOIPs, we will review some
of the central concepts of integer programming duality in this section. A
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more detailed discussion of the subject, including proofs for the theorems
stated below, can be found in Wolsey (1981) and Tind and Wolsey (1981).
Let F be the set of all nondecreasing functions F : Rm ! R, i.e.

F :¼ fðF �:Rm ! RÞ:FðaÞOFðbÞ8a; b 2 Rm; a2 bg

and consider the single objective integer programming problem

max cTx

s:t: Ax2 b

x3 0 and integer

ð14Þ

with c 2 Zn. Then it’s dual can be written as

min FðbÞ
s:t: FðAxÞPcTx 8x3 0 and integer

F 2 F :

ð15Þ

If the feasible set F is further restricted to the set G of nondecreasing and
superadditive functions, i.e., to the set

G ¼ fðF : Rm ! RÞ : Fð0Þ : ¼ 0; ðFðaÞOFðbÞ8a; b 2 Rm; a2 bÞ
and ðFðaÞ þ FðbÞOFðaþ bÞ 8a; b 2 RmÞg

we can reformulate the dual of (14) as

min FðbÞ

s:t: Fðða�jÞÞPcj 8j ¼ 1; . . . ; n

F 2 G:

ð16Þ

where ða�jÞ denotes the jth column of A. Note that for a nondecreasing, su-
peradditive function F 2 G, the constraint Fðða�jÞÞPcj 8j ¼ 1; . . . ; n is
equivalent to FðAxÞPcTx 8x3 0 and integer.

THEOREM 7. (Weak Duality). cTxOFðbÞ for all primal feasible solutions
x of (14), and all dual feasible functions F of (15) (or (16), respectively).

THEOREM 8. (Strong Duality). If either (14) or (15) ((16), respectively)
has a finite optimal solution, then there exists an optimal feasible solution x�

of (14) and a dual optimal function F � of (15) ((16), respectively) such that
cTx� ¼ F �ðbÞ.
Moreover, if (14) is infeasible, then (15) ((16), respectively) is either inf-

easible or unbounded, and if (15) ((16), respectively) is infeasible, then (14) is
either infeasible or unbounded.

The dual integer program and, in particular, the dual optimal functions
F �, are, among others, used for sensitivity analysis.
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COROLLARY 3. Let x� and F � be primal and dual optimal for ð14Þ and
ð15Þ /ð16Þ, respectively. If the constraint vector b in ð14Þ is changed to b0 6¼ b
(for example, due to changes in the input data of a given problem) the function
F � remains dual feasible also for the modified problem and satisfies z0OF �ðb0Þ,
where z0 denotes the optimal objective value of the modified problem.

4. A Composite function approach to multiple objective integer programming

We will in the following mostly refer to the more general formulation (15) of
dual integer programming problems, c.f. Section 3.3. However, the following
results equivalently hold for (16) in the case that we use superadditive functions.
Consider again the MOIP

vmax Cx

s:t: Ax2 b

x3 0 and integer.

ð5Þ

Applying the e-constraint approach for its solution implies that we have to
repeatedly solve problem (7) for different choices of an individual objective
function fðxÞ ¼ cix; i 2 f1; . . . ; kg and lower bound vectors e: ¼ ðejÞj2Ji 2
Rk�1 bounding the remaining objectives. Problem (7) is thus given by

max cix

s:t: CJix3 e

Ax2 b

x3 0 and integer.

ð17Þ

and its dual can be written as

min Fð�e; bÞ
s:t: Fð�CJix;AxÞPcix 8x3 0 and integer

F 2 F ;

ð18Þ

c.f. (15). Let F � be optimal for (18), that is, F � is a dual optimal function
for (17). Similar to the application of the dual optimal solutions of (9) for
the generation of a weighting vector and hence a linear utility function (13)
for the MOLP (3) in Section 3.2, we will now use the dual optimal func-
tions of (18) to define a utility function for the MOIP (5) as a composite
function given by

GðxÞ :¼ cix� F �ð�CJix; bÞ: ð19Þ
The composite integer programming problem is thus formulated as

max cix� F �ð�CJix; bÞ
s:t: Ax2 b

x3 0 and integer.

ð20Þ
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THEOREM 9. Let x� be optimal for (17) and let F � be optimal for (18).
Then x� is also optimal for (20).

Proof. Let F be feasible for (18). By Theorem 7 we have that cixOFð�e; bÞ
for all x feasible for (17). Moreover, any x that is feasible for (20) is also
feasible for (17) if e :¼CJix, implying that cixOFð�Cji x; bÞ for all x feasible
for (20). Thus the optimal objective value z� of (20) satisfies z�O0.
Since x� is feasible for (17), it is also feasible for (20), and by Theorem 8

it satisfies cix� ¼ F �ð�CJix
�; bÞ. This proves the optimality of x� for (20). (

THEOREM 10. x� is an efficient solution of (5) if and only if there exists an
index i 2 f1; . . . ; kg and a nondecreasing function F � 2 F such that x� is
optimal for the composite integer programming problem (20).

Proof. First assume that x� is an efficient solution of (5). By Theorem 4
there exists an index i 2 f1; . . . ; kg and lower bounds ej 2 R; j 2 Ji such
that x� is an optimal solution of (17). Let F � be the optimal solution of
the corresponding dual problem (18). Then Theorem 9 implies that x� is
optimal for (20).
Secondly, let x� be optimal for (20), and suppose that x� is not efficient

for (5). Then there exists x̂ 2 Rn such that C x̂PCx� . Let i 2 f1; . . . ; kg be
an index for which ci x̂ > cix� . Then CJi x̂3CJi x

�, and since F � is nonde-
creasing it follows that F �ð�Cji x̂; bÞOF �ð�Cji x

�; bÞ. Hence

ci x̂� F �ð�CJi x̂; bÞ > cix� � F �ð�Cji ;x
�; bÞ;

contradicting the optimality of x�. (

Once an efficient solution x� of (5) and a corresponding optimal dual
function F � 2 F of (18) satisfying cix� ¼ F �ð�Cji x

�; bÞ have been
determined, Corollary 3 implies that cixOF �ð�Cji x; bÞ for all x 2 fx 2
Rn :Ax2 b; x3 0 and integerg. In the context of the MOIP (5) this implies
that the level curve of the objective function of the corresponding composite
integer programming problem (20) at level zero yields an upper bound on
the set of nondominated solutions of (5) in the objective space.

COROLLARY 4. Let x� and F � be optimal for (17) and (18), respectively.
Then the set LF �ð0Þ: ¼ fz 2 Rk : zj ¼ cjx8j 2 Ji; zi ¼ F �ð�CJi x; bÞ; Ax2 b;
x3 0g is an upper bound on the set of nondominated solutions N of (5), i.e.,
8xF 2 LF �ð0Þ9= zN 2 N s:t: zNPzF.

5. Generation of Dual Optimal Functions and Composite Functions

Dual optimal functions for single objective integer programming problems
(14) can be generated by various different methods most of which are

10 K. KLAMROTH, J. TIND AND S. ZUST



inspired by a solution method for the primal problem like, for example,
cutting plane methods or branch and bound. In this way, the dual optimal
functions are obtained as a byproduct of a solution of the original integer
program and without additional computational effort.

5.1. GENERATION OF DUAL OPTIMAL FUNCTIONS USING CUTTING PLANES

We will use the Gomory fractional cutting plane algorithm (Gomory,
1963) as a representative example for a cutting plane method for the exact
solution of integer programming problems. The following brief description
is based on Wolsey (1981).
Consider the integer program (14) where we, as before, assume that

the problem is bounded and that all data is integer. Then in iteration r of a
cutting plane algorithm, rP0, a linear programming problem ðPrÞ given by

max cTx

s:t:
Xn
j¼1

aijxjObi; i ¼ 1; . . . ;mþ r

x3 0:

ð21Þ

is solved, where the first m constraints are defined by the original con-
straint matrix A and right-hand-side vector b and the remaining r con-
straints have been added during previous iterations. Note that in iteration
0, ðP0Þ is identical to the linear programming relaxation of (14).
If ðPrÞ is infeasible or if the optimal solution is integer the algorithm ter-

minates and the original problem (14) is solved. Otherwise, that is, if the
optimal solution xr of ðPrÞ has fractional components, there exists a con-
straint vector amþrþ1 ¼ ðamþrþ1;1; . . . ; amþrþ1;nÞ 2 Rn and a right-
hand side value bmþrþ1 2 R such that amþrþ1x ¼ bmþrþ1 is a separating
hyperplane between the set of integer feasible solutions of ðPrÞ and the opti-
mal solution xr of ðPrÞ. In particular, amþrþl and bmþrþ1 can be found as

amþrþ1;j ¼ Grþ1ða�jiÞ; Grþ1ðdÞ :¼
Xm
i¼1

kri di þ
Xr

i¼1

krmþiG
iðdÞ

$ %
;

where

bmþrþ1 ¼ Grþ1ðbÞ; kr ¼ ðkr1; . . . ; krmþrÞ3 0;

see Chvatal (1973). (In this formulation,kr is obtained as the fractional part
of the vector of coefficients of the slack variables of the Gomory cut in its
original form.)
We can conclude that amþrþlxObmþrþ1 for all x 2 fx 2 Rn:

Pn
j¼1 aijxjObi;

i ¼ 1; . . . ;mþ r; x integerg, and amþrþ1xr > bmþrþ1.Hence the constraint
amþrþ1xObmþrþ1 can be added as the ðmþ rþ 1Þst constraint to ðPrÞ, that
is, as a cutting plane that cuts off the fractional solution xr but no feasible
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solution of the original problem. The algorithm proceeds with the next iter-
ation, increasing the iteration counter to rþ 1.
Based on this algorithm, dual optimal functions can be constructed as

described in Wolsey (1981), utilizing the dual feasible solutions of the lin-
ear programming problems ðPrÞ:

LEMMA 1. Let ur 2 Rmþr; ur 3 0 be a dual feasible solution of ðPrÞ. Then
the functions

FrðdÞ :¼
Xm
i¼1

uri di þ
Xr

i¼1

urmþiG
iðdÞ ð22Þ

are superadditive dual feasible functions for (14). Moreover, if xr is optimal
for ðPrÞ and ur is dual optimal for ðPrÞ; then cTxr ¼ F rðbÞ.

Proof. (See Wolsey (1981). The second part of the lemma follows immediate-
ly from linear programming duality, c.f. Section 3.2. For the first part,
observe that F rða� j ÞPcj for all j ¼ 1; . . . ; n since ur is dual feasible for ðPrÞ.
Moreover,F r 2 G (c.f. Section 3.3) since ur 3 0, ki 3 0 for all i ¼ 1; . . . ; r� 1
and Giðd1Þ þ Giðd2ÞOGiðd1 þ d2Þ for all d1; d2 2 Rm; i ¼ 1; . . . ; r (as bacþ
bbcObaþ bc for all a;b 2 RÞ. (

Under the assumption that the Gomory cutting plane algorithm termi-
nates after a finite number of iterations r (which is, for example, guaran-
teed if the feasible set of ðP0Þ is bounded), the above lemma implies that a
dual optimal function of (14) can be constructed iteratively using functions
of the form (22).

THEOREM 11. Suppose that for a given problem (14) the Gomory cutting
plane algorithm terminates after a finite number of r iterations. If (14) has a
finite optimal solution, then there exists an optimal feasible solution xr of
(14) and a dual optimal function F r of (16) of the form (22) such that
cTxr ¼ FrðbÞ.
Moreover, if (14) is infeasible, then there exists a dual function Fr of the

form (22) satisfying F rða�jÞ > 0,j ¼ 1; . . . ; n and FrðbÞ < 0. In this case the
dual (16) of (14) is unbounded.

EXAMPLE 1. Consider the integer programming problem
max x1 þ x2

s:t: � x1O� 3

5x1 þ 2x2O22

x2O6

x1;x2P0 and integer:

ð23Þ
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The optimal solution of the inital LP relaxtion ðP0Þ is obtained as
x0 ¼ ð3; 3:5ÞT with objective value z0 ¼ 6:5. Since the solution has frac-
tional components the first Gomory cut is determined, defining the addi-
tional constraint 2x1 þ x2O9. Problem ðP1Þ of iteration 1 is then given by

max x1 þ x2

s:t: � x1O� 3

5x1 þ 2x2O22

x2O6

2x1 þ x2O9

x1;x2P0

with optimal solution x1 ¼ ð3; 3ÞT and objective value z1 ¼ 6. As this solu-
tion is feasible for (23) the algorithm terminates. The corresponding dual
optimal solution is determined as u1 ¼ ð1; 0; 0; 1Þ, and with k1 ¼ ð12 ; 12 ; 0Þ we
obtain a dual optimal function according to (22) as

FcpðdÞ :¼F rðdÞ ¼ d1 þ G1ðdÞ ¼ d1 þ
1

2
ðd1 þ d2Þ

� �
:

5.2. GENERATION OF DUAL OPTIMAL FUNCTIONS USING BRANCH AND
BOUND

While in the previous section superadditive dual optimal functions were
generated,the application of a branch and bound algorithm for the solution
of integer programming problems (14) will in general only yield nonde-
creasing dual optimal functions in the set F ,c.f. Section 3.3.
The basic idea of a branch and bound algorithm is to replace the origi-

nal problem (14) by a finite series of subproblems ðPtÞ of the form

max cTx

s.t. Ax2 b

x 2 Xt;

t ¼ 1; . . . ; r; such that fx 2 Rn :x3 0 and integerg �
Sr

t¼1Xt. We will
assume in the following that the sets Xt are given as Xt ¼ fx 2 Rn :
gtjOxjOhtj ; j ¼ 1; . . . ; n; x3 0g where gtjP0 and htj are integer lower and
upper bounds on the variables xj; j ¼ 1; . . . ; n. This assumption is satisfied
by a majority of branch and bound algorithms, and in particular by linear
programming based approaches that rely on the solution of a series of lin-
ear programming problems ðPtÞ.
A branch and bound algorithm terminates if all of the subproblems are

shown to be infeasible, or if an integer solution xt
�
is found that is opti-

mal for some subproblem ðPt�Þ and whose objective value zt� ¼ cTxt
�
domi-
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nates all of the remaining subproblems, that is, zt�Pzt for all t 6¼ t� where zt
is the optimal objective value of subproblem ðPtÞ. Otherwise, one or several
subproblems are further devided to obtain better solutions and or bounds.

LEMMA 2. If Ft 2 F are dual feasible functions for ðPtÞ, in the sense that
FtðAxÞPcTx 8x 2 Xt; t ¼ 1; . . . ; r, then

FðdÞ :¼ max
t¼1;...;r

FtðdÞ

is a dual feasible function for (14).

Proof. (See Wolsey, 1981). Let x3 0 and integer. Then x 2 Xt, for some
t 2 f1; . . . ; rg which implies that FðAxÞPFtðAxÞPcTx.Moreover, F is non-
decreasing since Ft; t ¼ 1; . . . ; n, are nondecreasing, and thus F 2 F . (

THEOREM 12. Let ð14Þ have a finite optimum solution. If a linear pro-
gramming based branch and bound algorithm terminates with a finite series
of subproblems ðPtÞ; t ¼ 1; . . . ; r, then there exists a dual optimal function
F 2 F of the form

FðdÞ :¼ max
t¼1;...;r

ðptdþ atÞ; at 2 R;pt 2 Rm;pt 3 0: ð24Þ

Proof. (See Wolsey, 1981). Let z� be the optimum objective value of (14)
and let t 2 f1; . . . ; rg be an arbitrary subproblem ðPtÞ at the termination of
the algorithm.
If the linear programming problem ðPtÞ has a finite optimum objective

value zt the corresponding LP dual is feasible. Thus the dual optimal solu-
tion ðpt; pt; �ptÞ3 0 satisfies pta�j �

Pn
j¼1 p

t
j þ

Pn
j¼1 �p

t
jPcj; j ¼ 1; . . . ; n and

the function FtðdÞ ¼ ptdþ at with at : ¼ �ptgt þ �ptht satisfies FtðAxÞ ¼
ptAxþ at ¼ ptAx� ptgt þ �pthtPptAx� ptxþ �ptxPcTx 8x 2 Xt. Hence Ft

is dual feasible for ðPtÞ, in the sense of Lemma 2. Moreover, by linear pro-
gramming duality, Ftb ¼ ptb� ptgt þ �ptht ¼ zt where ztOz� at the termina-
tion of the algorithm.
If, on the other hand, the linear programming problem ðPtÞ is infeasible,

there exists a dual ray ðxt;xt; �xtÞ3 0 such that xta�j �
Pn

j¼1x
t
j+Pn

j¼1 �x
t
jP0 and xtb� xtgt þ �xtht < 0. This dual ray can be combined with

any dual feasible solution ðpk; pk; �pkÞ3 0 of the LP dual of ðPtÞ (which
generally is available from a predecessor node ðPkÞ in the branch and
bound tree) to define a vector ðpt;pt; �ptÞ :¼ðpk; pk; �pkÞ þ kðxt;xt; �xtÞ with
a positive scalar k 2 R. A dual feasible function of (Pt) in the sense of
Lemma 2 is then obtained as FðdÞ ¼ ptdþ at with at : ¼ �ptgt þ �ptht: Note
that limk!1 FtðbÞ ¼ �1 and hence k can always be chosen such that
FtðbÞ < z�.
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We can conclude that FðdÞ ¼ maxt¼1;...;rFtðdÞ is a dual feasible function
for(14) according to Lemma 2. Moreover, for an optimal solution x� of
(14) there exists a subproblem ðPt�Þ such that x� is optimal for ðPt�Þ and
z� ¼ cTx� ¼ Ft�ðbÞ. Since F1ðbÞOz� for all t ¼ 1; . . . ; r it follows that
FðbÞ ¼ maxt¼1;...;rFtðbÞ ¼ Ft�ðbÞ ¼ z�: (

EXAMPLE 2. Consider again the integer programming problem (23)
introduced in Example 1. The branch and bound tree generated by the
algorithm is shown in Figure 1.
At the termination of the algorithm, the partition consists of the sub-

problems ðP3Þ, ðP4Þ and ðP5Þ, The corresponding dual functions in the
sense of Lemma 2 are given by

F3ðdÞ ¼ ½ð1:5; 0:5; 0Þ þ kð5; 1; 0Þ�d� ½0þ k � 2� � 4

¼ ð6:5; 1:5; 0Þd� 8 ¼ 6:5d1 þ 1:5d2 � 8 for k ¼ 1

F4ðdÞ ¼ ð0; 0; 0Þdþ ð1; 1Þð3; 3ÞT ¼ 6

F5ðdÞ ¼ ð0; 0:5; 0Þdþ 0:3� 1:5 � 4 ¼ 0:5d2 � 6:

Hence an optimal dual function of (23) is obtained as

fBBðdÞ ¼ max
t¼3;4;5

FtðdÞ ¼ maxf6:5dþ 1:5d2 � 8; 6; 0:5d2 � 6g:

5.3. COMPOSITE FUNCTIONS BASED ON CUTTING PLANES AND BRANCH

AND BOUND

Both methods discussed in the previous sections can be used to generate
dual optimal functions and hence composite functions for MOIPs as dis-
cussed in Section 4. This approach will be demonstrated on the following
example, building upon Examples 1 and 2.

Figure 1. Branch and bound tree for the example problem (23).
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EXAMPLE 3. Consider the MOIP

max x1 ¼ z1

max x1 þ x2 ¼ z2

s:t: 5x1 þ 2x2O22

x2O6

x1; x2P0 and integer:

ð25Þ

The e-constraint LP obtained by selecting the second objective for individ-
ual maximization (i.e., i ¼ 2) and fixing the lower bound on the first objec-
tive to 3 (i.e., e1 ¼ 3) is identical to problem (23) introduced in Example 1.
Figure 2 shows the set of feasible solutions of (25) in the objective space
together with the dual optimal functions of (23) as found in Examples 1
and 2. Here the value of e1 is considered as a variable which implies that
for values of e1 different from e1 ¼ 3 the dual functions yield upper bounds
on the values of the second objective z2.
Depending on the method used for constructing the optimal dual func-

tions, the following composite integer programming problems are
obtained:

� For the cutting planes method:

max x1 þ x2 � _FCPð�x1; 22; 6Þ ¼ 2x1 þ x2 � b�0:5x1 þ 11c
s:t: 5x1 þ 2x2

x2O6

x1; x2 P0 and integer:

Figure 2. Dual functions generated based on (a) cutting planes and (b) branch and bound.
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� For the branch and bound algorithm:

max x1 þ x2 � FBBð�x1; 22; 6Þ ¼ x1 þ x2 �maxf�6:5x1 þ 25; 6; 5g
s:t: 5x1 þ 2x2O22

x2O6

x1; x2P0 and integer:

Note that the representations of the dual functions shown in Figure 2 cor-
respond to the level curves of the objective functions of the respective com-
posite integer programming problems at level zero. These level curves
constitute two distinct outer approximations of the set of nondominated
solutions of (25), c.f. Corollary 4.

6. Conclusions

Based on dual information obtained from appropriately formulated single
objective linear and integer programming problems, we have developed an
integrated utility theory for multiple objective linear programming (MOLP)
and multiple objective integer programming (MOIP). The suggested com-
posite function approach leads to a unifying theory that highlights the close
relationship of the two models as well as their intrinsic differences.
Composite functions can be used to evaluate and visualize utility infor-

mation yielding a specific nondominated solution. Their determination can
be integrated with applications of classical cutting plane methods or branch
and bound algorithms for the solution of e-constraint versions of (MOIP).
This naturally suggests a combination of composite function determina-
tions within an interactive procedure that repeatedly formulates and solves
e-constraint problems, see Bard (1986). In particular, the upper bounds on
the nondominated set obtained from level curves of composite functions
provide valuable information which can be used to aid the decision
maker with the adaptation of aspiration levels and/or the selection of a
most relevant optimization objective, also in the context of aspiration-
based methods as suggested in Nakayama (1995) and Miettinen and
Mäkelä (2000).
In applications where an exact determination of composite functions

using, for example, branch and bound is impractible due to the size of the
branch and bound tree, approximate composite functions (and weaker upper
bounds) can be obtained based on premature termination of a branch and
bound (or cutting plane) algorithm. Already after a few branching steps
the resulting approximate composite functions are likely to yield improved
utility information as compared to simple weighted sums scalarizations
obtained from the LP relaxation of (MOIP).
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